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WKB analysis of energy band structure of modulated systems 

G i -Watson 
Department ai  Theoretical Physics, Univenity of Oxford, Oxford, OX1 3NP. UK 

Received 17 April 1991, in final form 23 July 1991 

AbstracL A discrete WKB approximation is applied to Harper's equation describing the 
motion ai  an electron in a square lattice subject to a magnetic field. The treatment i s  
valid when the modulation parameter (proponional to the magnetic field) is a rational 
number M I N ,  in the limit of large N .  A uniform asymptotic expression is derived lor 
the Floquet wavenumber which characterizes the dynamics and spectral properties. The 
case of energies near the classical separalrix, crucial to the properties of the spectrum 
near the transition bctwcen localized and extended states, is included. An application is 
a detailed calculation of the total width of the bands in lhe critical region, for M = 1 
ana L.  ,ne r e s u ~ s  are cunsisieni with Tni'nouiess' conjeciurr ihai ihc bandwidih obi78 B 
universal scaling form, independent of M .  
- - >  n - ~ ~ - ~ ~ , . ~  ~~~~ ~~ ~~ ~ 

1. Introduction 

The discrete eigenvalue equation 

a,tl + e,an + a,,-, = w a n  (1.1) 

has been studied in connection with a variety of physical systems characterized by the 
presence of two independent length scales (for a review, see Sokoloff 1985). Here 
the sequence {a, : n integer} represents the wavefunction of the system, w is t h e  
energfeigenvalue, and the modulation e, is a periodic or almost periodic function 
of its index. Systems of interest include a tight-binding model of electrons in a lattice 
with a uniform applied magnetic field (Harper 1955, Hofstadter 1976), a modulated 
spring model of the lattice dynamics of incommensurate crystals (Currat and Janssen 
1988), and a model of spin fluctuations in longitudinally modulated magnetic materials 
(Lovesey 1988a). A further example occurs in a mean-field treatment of anyons on a 
square lattice (Hasegawa et al 1990). 

The most widely studied case is a sinusoidal modulation, 

e, = 2ycos(2rr@n + A )  (1.2) 

in which case the difference equation (1.1) is known as Harper's equation or the 
discrete Mathieu equation. This form is appropriate for the electron problem, where 
y is unity for an isotropic lattice, 4 is proportional to the magnetic field, and the 
wavefunction {a,,] is the amplitude of a Wannier function centred at the lattice site 
n. The sites are labelled along an axis perpendicular to the field, whose direction 
depends on the choice of gauge for the vector potcntial. 
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If the modulation parameter 4 is a rational number, M / N ,  the system is periodic, 
and is exactly soluble by a generalization of the Bloch treatment usually presented 
for crystal electrons (Lovesey 1988a,b, Lovesey and Westhead 1990a,b, Lovesey el 
al 1991). The eigenvalues w, allowing hounded solutions, form N hands. Dynamic 
response functions, densities of states and band edges may he written in closed 
form for any given periodicity. Modulations incommensurate with the crystal period, 
represented by irrational values of 6, may he studied using the large-N limit, since 
aii 
denominator. Unfortunately, the exact solutions increase rapidly in complexity with 
N ,  and are of little practical use in the incommensurate limit. Qualitative features 
of the energy spectrum have been successfully studied by numerical techniques (for 
example, Hofstadter 1976) hut knowledge of the structure of the eigenfunctions, 
crucial to the dynamics of these systems, is still incomplete. 

of small magnetic fields. The treatment complements work along similar lines by 
Harper (1955), Azbel' (1964), Wilkinson (1984a,h) and Wang et al (1987) by providing 
uniform asymptotic expressiom for the eigenfunctions and the Floquet wavenumber 
which characterizes the dynamics and spectral properties. The results become exact 
in the large-N limit. The hand edges in the energy spectrum are obtained as roots 

,of the total bandwidth near the critical point y = 1: a result of Thouless (1990) is 

iiiay. be app;oxir,ateb ai"uitiaii;j. .we;; ".j; a iac,or,a; .Wit?, auE,;libi,ily jarbe 

!n !!is paper we 2pp!y a techniq-e to the Earper eqnatiox, %!id In the !;--it 

of 2 transcendenra! enitatinn An r r p p ! i ~ ~ t ~ ~ n  & the inve.s!igatinn sca!ifig beh2vin.r . -. - 
derived by more direct means and extended to M = 2 .  

2. General features of the eigenfunctions 

We assume throughout that 4 = M / N ,  where M and N are co-prime integers. 
Since the eigenvalue equation (1.1) is linear, a general solution may he expressed in 
terms of two linearly independent polynomial solutions p ,  and qn, chosen to satisfy 
p ,  = q1 = 0 and p ,  = qo = 1. All quantities of interest may he expressed in terms 
of these functions (Lovesey el al 1991), in particular the density of states, normalised 
to unity, 

where 

and the prime indicates the derivative with respect to w .  The band edges, for a 
particular value of the phase A, are thus the zeros of the polynomial 0% - 4. For a 
given w in a band, lON1 < 2, there exist solutions of (1.1) obeying Floquet's theorem 
in  the form 

2 cos( N k )  = 0, (2.3) - e i N k  a,+,,,- a, where 

and k is the Floquet wavenumber. Roots of 0, = 2 correspond to symmetric Roquet 
solutions, k = 0, while 0, = -2 yields antisymmetric solutions, k = n / N .  
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In the electron problem, the phase A is the y-component of the Bloch wavevector, 
and most quantities of interest are integrals over A. The full energy spectrum is 
therefore the union of eigenvalues for all values of A.  The duality property of 
Harper's equation (Aubry and Andrk 1980) implies that 0, depends on A only 
through the term -2yN cos(NA),  and hence the band edges correspond to extrema 
of Zcos(Nk) + 2yN cos(NA),  namely 

n , n _ n \ - n  
IJ" (LA = U )  = ' 
O,(A = 0) = - 2 ( 1 t  27,). 

E .._I^ L:" ---t-. uglrrrl,rurL. I Y Y L J .  

Antisymmetric roots: 
(2.4) 

Henceforth we set A = 0 accordingly. The spectrum is confined to the interval 
-2(1 + y )  < w < 2 ( 1 +  y). is symmetrical about w = 0, and is invariant under the 
duality transformation y -, l /y ,  w + w/y .  A change of sign of y may be absorbed 
in the phase A ana has no effect on the spectrum. Hence no generaiity is iosr in 
taking 0 G y < 1 and w 2 0. For reasons explained later we also exclude the case 
y 0 0. 

3. WKB solution 

If the wavelength 27r/+ is large, the sinusoidal modulation varies slowly compared 
with the wavefunction, and one may apply a continuum approximation to (1.1). Thus 
we are interested in the limit - 0, or equivalently N + 00 with k e d  M .  In 
physical terms, we suppose the radius of the electron's cyclotron orbit to be large 
compared with the lattice spacing. A similar treatment applicable when 4 is close to 
a non-zero rational has been sugested by Sokoloff (1981); that topic is not pursued 
here. 

The starting point for the  analysis is a discrete form of the physical optics approx- 
imation of WKB theory (Bender and Orszag 1978), 

Q, = e x p  [ N S d z )  t S, (z) l  (3.1) 

where x = njfV contains the order dependence. ine  iunctions So ana S,, to be 
determined, are the leading order terms in a formal WKB expansion in powers of the 
small parameter 1 / N ,  which plays here the same role as h in semiclassical approxi- 
mations in quantum mechanics. Functions of integer index will be writtcn as functions 
of the continuous variable z; thus a, and a(.) will be used interchangeably. With 
this notation, a(.) satisfies 

a(z+ 1 / N )  t Q ( Z -  1 / N j  = 2cos[p(z)]a(x)  

p(x) = cos-'(w/2 - ycos(2lrMx)) 

(3.2) 

where 

(3.3) 

is analogous to the classical momentum. Substituting (3.1) into t h s  equation and 
equating powers of N ,  we find 

(3.4) 
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in which the primes denote differentiation with respect to I .  Solving for So and SI 
generates two linearly independent WKB solutions, 

a(.)  = [sin p(z)]- l” . .p[ i iNS2p(t)dt]  (3.5) 

which form the basis for the subsequent analysis. 
Near the classical turning points where p ( z )  = 0, the WKB approximation breaks 

down since the iocai waveienyiii l?r / iv ’p  is comparabie with the moduiaiion wave- 
length. Away from these regions, (3.5) yields the leading term in the asymptotic 
expansion of a, as N - m. Higher-order corrections, generated by extending the 
formal WKB expansion (3.l), are of order I / N .  

When w < 2(1 - 7) there are no turning points and (3.5) is a uniform approxi- 
mation for all z in a finite interval. From (2.3), 

8, = 2 cos [ N 1’ p (  1 )  dt] . 

Hence, to  leading order, all positive w less than 2( 1 - y)  are eigenvalues. The wave- 
functions are oscillatoly extended states, corresponding to classical phase trajectories 
open in the z-direction (Wilkinson 1984a). 

Tbrning points arise for w > 2(1 - y), corresponding to the existence of closed 
orbits in classical phase space. In this case, treated in section 3.1, WKB solutions 
in adjoining regions are matched using a local solution at the turning point. When 
w z +Z( 1 - y) or k Z ( 1  + y), quadratic turning points occur, as described in section 
3.2. In section 3.3 the various approximations are united into a single formula, valid 
urriiorniiy 111 w aiid y. 

3.1. First-order tuming points 

If w > 2 ( 1 -  7 )  there are 2 M turning points, 

c-.-... ._ 

8 1-0  1 + 8  2 - 8  M - l + 8  M - 8  
M ’  M ’  M ’  M ” . ”  M ’ M  
- _ _ - _ _  

in the unit interval, where 

p = (27r-’cos-’[(w/2 - l ) / y ] .  (3.7) 

Consider initially the interval 0 < I < I /M,  which contains two turning points. 
Defining 

P 
q(2) = 24-1 J cos-’ [ w / 2  - ycos(2nt ) l  d l  

z 
(3.8) 

11.2 
a ( x )  = 24-1 J, cosh-’ ( w / 2  - y cos(Znt )]  d t  

the wavefunction for I < P / M  is proportional to exp(f iq(Mz)/2] ,  while in the 
classically forbiddcn region p / M  < z < ( I  - P ) / M  it contains the exponential 
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factors e x p [ f o ( M z ) / 2 ] .  The matching procedure is analogous to the case of a 
continuous variable: the solutions near the turning point are standard Airy [unctions, 

Ai[a1I3(z - p / M ) ]  and Bi[01'/~(z - P / M ) ]  (3.9) 
in which 01 = 4nMN2sin(2np) is the local slope of the potential. A phase factor 
~ / 4  appears when exponential and oscillatory solutions are linked. A similar analysis 
applies at the second turning point, yielding the WKB solution 

4.1 

= (~inh@)-' /~exp[-u(Mz)/Z] P / M  < < (1 - P ) / M  

(1 - P ) / M  < z < 1 / M  

(sin p ) - ' / 2 e - " / 2  c o s [ v ( M z ) / 2  + ~ / 4 ]  O < z < P / M  

2(sinp)-1/2e0/2cos[q(l - M z ) / 2  - n/4] 
(3.10) 

@(z) = cosh-'[w/2 - y c o s ( 2 n M z ) l  (3.11) 

in the forbidden region. This compound solution, supplemented by Airy functions 
of the type (3.9) near the turning points, is uniformly asymptotic to a solution of 
(1.1) over the interval 0 < 2: < l/M. A second linearly independent solution is 
a ( l / M - x ) .  

We are primarily interested in the change in a(  z) over a unit interval, requiring 
a chain of M such composite solutions. In the allowed region containing z = j / M ,  
we write 

1 
where n = U( p )  and 

a(.)  = A j a ( z  - j / M )  + Bja((j + 1)/M - z). (3.12) 

Consistency between adjacent regions demands that the cocfficients satisfy the linear 
equations 

(Ajtl) = ( 2 e " c o s q  - s i n q  
Bjt1 s i n q  ;e-" 

where q = q(0). This completes the solution for the eigenvectors, which are gener- 
ated from (3.12) by successive powers of the matrix T. 

The function 0, is readily evaluated from (2.3), yielding 

O N  = TrT". (3.14) 

Since det T = 1, the solution is conveniently expressed in terms of the Floquet 
wavenumber, 

(3.15) 

The dominant term in O N  is (2e" cos q)'", so the bands are centred roughly at the 
zeros of COS q and their width, proportional to e -hf0 ,  dccrcases vcry rapidly with w 
and N .  In summary, to a first approximation the positive energy bands fill the region 
0 < w < 2(1 - y)  and are very narrow for w > 2 ( 1  - 7). Consequcntly the total 
width of the bands approaches 4 ( 1  - y)  in the incommensurate limit, as discovered 
empirically by Aubry and Andr6 (1980). A dctailcd calculation of the bandwidth is 
given in section 5.  

2 cos(k/$,) = Tr T = (2e" + :e-") cos 7. 
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3.2. Second-order luming points 

The assumptions leading to (3.10) are not valid when the slope (I is small, indicating 
quadratic behaviour of the potential near the turning point. The precise criterion 
for failure of the linear turning point solution is that the fractional change in p 
over one wavelength 2 r r / N p ,  a t  the extrema of c o s ( Z ~ M z ) ,  be of order unity, and 
hence (w =k 2(1 f y)l = 0 ( 1 / N ) .  An equivalent condition is that the wavelength is 
comparable to the distance between the turning points. The cases w = *2( 1 + y) are 
of liitle interest as they correspond to the extreme edges of the spectrum, where the 
bands have negligible width. The regions Iw=kZ(I-y)l = 0 ( 1 / N )  however, although 
vanishingly small as N - m, dominate the total bandwidth. They correspond to phase 
trajectories near the classical separatrix. 

We apply local analysis at the extrema of cos(2rrMz) .  In a neighbourhood of 
the maximum z = j / M ,  the wavefunction satisfies the parabolic cylinder equation, 

(3.16) 

where b, = (-l)na, is written as a function of the local variable E = 
( 4 ~ M N ) ' / ~ y ' / ~ ( z  - j / M ) .  In the notation of Abramowitz and Stegun (1972), 
the soiution is a linear "bindtion oi 
minima of the cosine the local solutions are W ( a 2 ,  A t ) ,  where 

and qal, -0; simiiariy ai i'ne 

uri!?g the zsymptotic term !er parabo!L cy!i!?der f??!?ctb!!s, the !or.! sa!L!tion m2y 
be matched with the WKB form in the intermediate regions, which arc free of turning 
points. Writing 

( - I )"% = C , W a , , € )  + D,W(a , , -E)  (3.18) 

the matrix transforming ~ the coelficients is given by the product 

in which 4' is the fractional part of l/+, R[O] is the 2 x 2 rotation matrix, and 

s inh IC, =e'"' i = i , 2  (3.20) 

x =  ~ + a 1 l o g l a , l - a , - a r g r ( ~ + i a l )  
- a 2 1 0 g l a 2 1 + a z + a r g r ( ~ + i a z ) .  (3.21) 

The dependence of the transformation matrix on the index j ,  arising from matching 

significance in terms of band clustering is discussed in section 4. 

written 

!he w.!? p8.s. wit!! the \ 1-1 I J  j" rmar i!? (3.!8), is a considera_h!e camp!ication. Its 

The Floquet wavenumber once again satisfics a trace condition, which may be 

ON =Tr(W, - ,UW,_,U.. .W,U) (3.22) 
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where 

) (3.23) 

) (3.24) 

-sinh n1 cos(2s4’ j )  + cosh K ,  

-s inh ~ , s i n ( Z x & j )  
- sinh n1 s in(2n&j)  

sinh K ,  cos(2x&j)  + cosh nl 
w, = ( 
and 

= (cosh K ,  cos x + sinh K ,  -cosh IC, sin x 
cosh K ,  cos x - sinh K ,  cosh n2 sin x 

The first four cases are 

M = l  ON = 2 c o s h n l c o s h n , c o s ~ - 2 s i n h n 1 s i n h n ,  

M = 2  ON = 2cosh2 K ,  cosh’ n2 cos 2 x  - 2 sinh’ 

M = 3  ON = 2 c o s h 3 ~ , c o s h 3 n 2 c o s 3 , y - 2 s i n h 3 ~ , s i n h 3 n 2  

cosh2 n2 + 2sinh2 n2 

+ 6 cosh K ,  cosh n2[sinh2 nl  COS( x + 2 ~ 4 ’ )  
+ sinh’ n2 cos x] 

(3.25) 

M = 4  ON = 2 c o s h 4 ~ , c o s h 4 ~ , c o s 4 ~ - 4 s i n h 4 ~ ,  - 2 c o s h 4 ~ , c o s h 4 n 2  

+ 2 + 16 cosh2 K ,  cosh2 n2 cos x 
x [sinh2nlcos(x+2rr+4’) + s i n h 2 n 2 c o s x ] .  

Results for larger M are readily generated but are somewhat unwieldy. 

3.3. Uniform approximation 

In this section we regard ON as a function of the scaled energy variable a,, defined 
in (3.17), representing the deviation from the breakdown region w 2: 2( 1 - y).  The 
asymptotic expressions (3.6) and (3.15) may be combined in the form 

2 cos(k/4)  = 2e“ cos q la21 >> 1 (3.26) 

N .  where p = 1 / 2  for w < 2(1 - y). The third case, (3.22), is valid for la21 
Furthermore, we have the asymptotic identities 

(3.27) 

In the overlap region 1 << lazl << N, we have U >> 1 and so the various expressions 
for ON do indeed agree asymptotically. Equation (3.22) encompasses both definitions, 
neglecting sub-dominant terms, if we take n2 to be defined by 

(3.28) 

With this modification, (3.22), including the particular instances (3.25), is a uniform 
asymptotic approximation to ON over the entire range 0 < w < 2(1 + y )  - E, for 
any e .  
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0 0.5 1.0 1.5 2 0  
w 

Figure 1. The relative ermr ( 2 e " ) - M A B ~  is plotred as a function of lhe energy W. 

for -( = 0.5, M = 1 and N = 10, 25, 100. 

The relative error of the asymptotic exprcssion for 8, is plotted in figure 1 as 
a function of w for selected values of N. The quantity (2e')-MAON, where A@, 
is the absolute error, is used as a measure of relative error which avoids divergence 
at the zeros of 8,. Exact values of 8, were calculated by direct iteration of the 
eigenvalue equation (1.1). In accordance with the remark above, the error is seen to 
be uniformly bounded over the interval of interest and to decrease as 1/N for large 
N. Encouragingly, the error is tolerable even for modest values of N .  

4. Hierarchical clustering 

Clustering rules were first constructed empirically by Hofstadter (1976) based on 
the peculiar self-similar nature of the 'butterfly' diagram, a plot of the spectrum as 
a function of the modulation parameter 4. These rules state that for a given 4, 
the spectrum consists of a central band and two side bands, each further split into 
sub-bands according to transformed values of 4, namely 

for the side bands 

for the centre band " = { :sy: - 24)) 

where {. . .) denotes the fractional part. An analytical derivation of the rules, using 
perturbation theory, was given by Stinchcombe and Bell (1987). 

Some features of this clustered structure are present in the asymptotic solutions 
obtained in section 3. In the large-a2 region, bands are concentrated at the points 
where cos 7 % 0, or more precisely where the local energy coordinate 

is small. It follows from (3.26) that 0 ,  behaves locally like 2 c o s ( M w ' )  or 
Zsin(Mw'), which describes a cluster of M bands separated by large gaps from 
neighbouring clusters. These are precisely the side bands of (4.1). associated with 
modulation parameter +' = N / M .  Secondary clustering effects, from { l / { l / d ~ ) )  
for instance, do not occur at this level of approximation. 
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By contrast, the quadratic turning point solution (3.22), in the breakdown region 
w 2( 1- y), does display these higher-order effects. ?bo see this, note that 8, is the 
trace of a product of A4 matrices, each containing factors of the form cos(Zrr4'j). 
The condition that w lies in a hand is equivalent to a houndedness restriction on the 
solutions of an M-periodic difference equation. Explicitly, if 

(4.3) 

where de t (WjU)  = 1, then 

A j 2 ~ j - l  - (Aj'Aj?, + A : 2 A E , ) ~ ,  + A ~ ? , C ~ + ~  = 0. (4.4) 

The coefficients in this equation are modulated according to the transformed param- 
eter 4' = {1/4}. Although (4.4) is different from (1.1), in that all three terms are 
modulated non-sinusoidally, it is reasonable to expect further splitting to accord with 
(4.1); indeed Stinchcomhe and Bell (1987) have argued on general grounds that the 
same rules apply universally to a generic class of almost periodic difference equations, 
including (4.4). We conclude that all orders of the clustering hierarchy are manifested 
in the asymptotic solution in the breakdown region. 

A similar scheme has been used hy Wilkinson (1984a) to construct an approximate 
renormalisation group transformation for Harper's equation. 

5. Total bandwidth 

ine  DendVlUUK UI me specrrum near rne seir-uwdi puirii y = i k 0; ~ ~ f i ~ i d e i a b k  
interest, because the eigenfunctions undergo a transition from localized to extended 
behaviour there (Auhry and Andre 1980). As an application of the uniform asymptotic 
solution, we calculate the total measure of the energy spectrum in this critical region. 
From (2.4) this bandwidth, W, is equal to the total width of the N intervals in which 

".. L . . . . ~ ~ . . ~ ~ .  .r &L. ._.. _.._ _I. ... c >..., 

- 2 ( ?  + 2 y N )  < 0, < 2 1  (51) 

As remarked earlier, the widths of individual hands decreases extremely rapidly with 
w, so that negligible measure is contained in the region a2 >> 1; this statement may 
he justified rigorously. In the large-N limit, all significant width is concentrated in 
the region w % 0, in which (3.22) is valid. 

Restricting attention for the moment to  M = i and introducing the variables 

we hme, for large N, 

(5.3) n - " . a  ,.-- L.2 I - : - L z . . , l l Z "  1 - 2 8  ", = 9c \cuar, D T a,,,,, U, cur. n - i r j  . 
If y is sufficiently close to the self-dual point so that s = O( l), thcn y N  = e2M.q 
and the hand edges satisfy 

(cosh's + sinh2 u ) ' I 2  cos x = f c o s h  s. (5.4) 
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Subsequent analysis depends on the fact that x varies very rapidly compared with U: 
this follows from the small a2 expansion, 

v = T,, + 2 a 2 [ l o g ( ~ 4 / 4 )  - 11 
+ (a1 + a,) log IQ1 + a 2 1  - a, 1% IQ11 + 0 2  1% 1021  (5.5) 

which implies that 

is of order log N .  It follows that to leading order, U is constant over a given band. 
Zeros of cos x fall within the bands; if 6x represents the deviation from such a zero, 
the width oE a singie band is 

neglecting quantities of order ( N  log N)- ' .  The total bandwidth, including bands a t  

integral, 
i,egatiq.e ei,eigies, &, if,ei, a jum ovei ai; t.ne ZefoS, which may .De by Bii 

(5.10) 32 
T N  W = - (0.915 96559..  .) M = 1 

where the number in parentheses is Catalan's constant (Abramowitz and Stegun 
1972). Considering terms neglected in the derivation, higher-order corrections to the 
bandwidth are likely to be of order ( N  log N ) - ' .  

The analysis for M = 2 follows similar lines, yielding 

W = ( 3 2 / r r N )  {cos- ' [~eU(cosh2s+s inh2")- ' '2]  

1 2 -  (5:ll) - s ~ . - ~ r ~ e - ~ ~ c n s h ~ s  + s i n h 2 u ) - w ]  1 d X :  
Jam 

This integral may be reduced to standard algebraic integrals by differentiation with 
respect to s, followed by the substitution y = e2- ;  the bandwidth is then obtained 
by integrating with respect to s. As the algebra is rather tedious we simply state the 
result: W is given by the same formula, (5.9), as found for M = 1, reducing at the 
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self-dual point to (5.10) involving Catalan’s constant. Thus the bandwidth near the 
self-dual point has precisely the same large-N behaviour in both cases M = 1 and 2. 

Numerical evidence supports Thouless’ (1990) conjecture that the bandwidth for- 
mula (5.10) is universal, holding for all M even or odd. We have calculated band 
edges and widths using standard numerical diagonalisation routines applied to the 
N x N matrix corresponding to (1.1). The asymptotic expressions of section 3 pro- 
vide a convenient check on the accuracy of the results. In all cases except M = 1, 
N W  converged extremely rapidly to its limiting value, (5.10). For M = 1, the 
convergence was much slower, consistent with logarithmic approach to the limit as 
remarked above. The same limit is obtained even when M and N increase together 
in such a way that M / N  approaches a non-zero limit, rational or irrational. 

The results of this section suggest a stronger universality, namely that the band- 
width tends to the large-N limit (5.9), independent of M, in the entire critical region. 
Tb our knowledge, no analytical proof of this universality exists. Unfortunately, the 
above derivation does not readily extend to higher values of M due to the compli- 
cated algebraic form of 0,. (3.25). The case where M / N  approaches a non-zero 
limit is outside the scope of the present analysis. 

6. Conclusions 

We have applied a fresh approach, based on a discrete WKB approximation, to 
Harper’s equation describing the motion of an electron in a square lattice subject 
to a uniform magnetic field. The treatment is valid when the parameter 4, propor- 
tional to the field, is a rational number M I N ,  and provides a uniform asymptotic 
approximation in the large-N limit. We cover the case, (3.22), omitted by Wilkinson 
(1984a), of trajectories near the classical separatrk Although this corresponds to a 
very narrow energy range, it contains the dominant contribution to the total measure 
of the spectrum, W, in the critical region near the transition between localized and 
extended wavefunctions. Our detailed calculation of this bandwidth confirms, using 
a more transparent approach, the result, (5.9), of Thouless (1990) for M = 1. We 
have extended the calculation to M = 2, showing that W approaches a limiting form 
identical to that for M = 1, throughout the critical region. The conjecture that the 
large-N limit is independent of M, confirmed by numerical work, remains open. 
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